
Regular Halo Applications

Tony Skjellum, UTC

August 23-24, 2021

Overview

• Halo applications current/traditional use of MPI

• What’s changed?

• Overlap of Communication and Computation

• Persistent and Partitioned Comms

• Assessments/Achievements

• Next Steps

• Lifecycle of innovation to production

• Q&A

Halo applications current/traditional use
of MPI
• Point-to-point communication

• Irecvs , Isends, Waitall
• Earlier: Sendrecv, cart topologies, etc.
• Various orderings of how these operations are

coded
• Coded for deadlock-free operation

• Data-moving collective communication
• Alltoall*
• [Neighbor versions]
• Nonblocking forms (since MPI-3)

• Reductions
• Global Allreduce / Allgather
• Neighborhood Reductions / Gathers
• Nonblocking forms (since MPI-3)

• In regular codes, communication neighbors
are static or only slowly changing

• Derived datatypes or pack/unpack

• Originally for multicore nodes + MPI – usually
“MPI everywhere”

• Overlap of communication and computation
not emphasized

What’s changed?

• Accelerator-based architectures
• more time spent in MPI - upwards of 50% of some application time

• Complex interactions of accelerator, kernels, CPU, with MPI

• Low performance

Overlap of communication/computation

• Lab codes have not achieved
comm/comp overlap

• Providing a means for overlap is
now valuable

• Wasn’t valuable enough before:
• pre-GPU comm percentage – 5% in

MPI

• now ~ 50% of time in MPI

• now it matters

• Why didn’t they overlap?
• Weak progress MPI? → Didn’t matter

• Our goals
• Take out of hands of application

developers,

• Achieve ”what” vs. “how” tradeoff for
halo codes via new abstractions

• Leverage/show value of strong
progress in MPI

Rationale/Explanation – Persistent and
Partitioned Comms

• Persistent send/receive in MPI-1 – but weak semantics
• Can optimize derived datatypes/local resources, not typically done

• Full planned transfer modes of persistence were added in MPI-4
• Persistent Collective Operations

• Partitioned Point-to-point Operations

• Work well with static, bulk-synchronous codes

• Use cases for applications such as machine learning have been
identified too

Persistent Collectives

• Stages
MPI_Allreduce_init(…,request) – all parameters fixed

MPI_Start(request)

[Opportunity for overlap]

MPI_Wait(request)

• Relaxed ordering rules vs. normal collective operations

• They take static arguments

• Applies to communication operations only in MPI-4

Persistent Collectives – Why optimizable

• Select best algorithm (can be expensive, do just once)

• Lock-down static resources (do this once)

• Adapt over time (optionally update strategy internally)

• Elimination of point-to-point receive queues – can be RDMA based

• Semantically aligned with
• NIC and switch offload of collectives

• Can choose to offload operations in reductions to accelerators too

Partitioned Point-to-point

• What’s a partition?

• Sender: Decides how many partitions it will break its data into
MPI_Psend_init(…,request) – all parameters fixed

MPI_Start(request) – moves no data

[Sync step]

MPI_Pready()… each partition

[Opportunity for overlap]

MPI_Wait(request)

• Receiver: Decides how many partitions it will break its received data into
MPI_Precv_init(…,request) – all parameters fixed

MPI_Start(request)

[Sync step]

MPI_Parrived()… each partition

[Opportunity for overlap]

MPI_Wait(request)

Partitioned pt2pt – Why optimizable

• Select best partitioning strategy (can be expensive, do once)

• Match endpoints (do this once)

• Lock-down static resources (do this once)

• Allows multi-threaded/kernel interaction with single large buffers

• Finer-grain overlap revealed by application

• Hides tail-latency of laggard threads; supports “early-bird communication”

• Reduces need for MPI_THREAD_MULTIPLE in entire MPI Code

• Elimination of point-to-point receive queues – can be RDMA based

• Semantically aligned with NIC and switch offload of collectives

• Deciding optimal offload semantics for accelerators still being worked on

Persistent/Partitioned Comms Big Picture

• It is straightforward to convert bulk-synchronous codes to use these primitives

• Better interfaces when MPI processes have concurrent producers and
consumers of their buffers

• Revealing APIs that eliminate receive queues when optimized

• Enable algorithm selection that’s optimal

• Providing accelerator, NIC, and switch-friendly APIs

• Support overlap of communication, communication, and computation

• Begin process of MPI being concurrency-aware inside a process, beyond the
MPI_THREAD_* settings

• Help with performance and performance-portability

More work remains for specification,
standardization, and demonstration…

• Areas
• Partitioned Collectives

• Updateable persistent operations

• Synchronization/other interactions with accelerator state

• More exploration/exploitation of features in halo codes

Assessments/Achievements

Fiesta Assessment and
Performance Improvements
• UNM Fiesta - Kokkos implementation of open capabilities of LANL HIGRAD shock

hydrodynamics solver
• By Romero et al., open source release planned soon
• Simple 3D relatively large (3 ghost layers, 5 vars) halo exchange - 5003 per GPU mesh exchanges 30MB

messages

• Initial code was clear but not well-optimized - 3D bubble expansion test spent 50% of its time in
halo exchange (mainly data packing and copying)

• Conceptually simply optimizations yielded 15-20% performance improvements
• Overlapping Y/Z direction packing with the communication in the previous direction – 8%
• CUDA-aware MPI when available – 8%
• Doing this was not as trivial as it would seem – challenges with MPI, Kokkos, and C++ interactions

• Neighbor collectives should be able to do this
• Not feasible today due to poor implementation of MPI datatypes on GPUs
• Trying to use MPI datatypes resulted in a >1000% slowdown!

• Performance study details later on the poster by Ryan Goodner

Lots of possible new and modified
abstractions now possible, I
• Persistent/partitioned point-to-point communication (MPI-4)

• Persistent collective operations (MPI-4)

• Partitioned collective operations (MPI-5)
• Persistent

• Neighbor

• Initiation and Completion semantic options

• Newer possible abstractions that address data transfers at a higher level

• All persistent operations have the potential for reducing derived datatype “costs”

• Modifiable persistent and partitioned operations with reduced overhead—MPI-5

Lots of possible new and modified
abstractions now possible, II
• Higher-level primitives may be useful such as alternative ways to describe data

layouts (replace derived datatypes)

• Direct C++ Language Interface for MPI – enable greater collaboration and
optimization with packages like Kokkos/Raja/etc

• REACH: One-sided (RMA) persistence---experimental idea for MPI-5

GPU Data Exchange Benchmarking

• Motivation: Need better tools to understand GPU communication costs
• Current communication benchmarks either trivial (OSU ping-pong) or fairly complex (Comb)
• Tying GPU profiling to MPI and applications not always trivial

• Created ping-pong test using Fiesta/Kokkos 4D state array
• Examine data exchange options on more realistic application data structures
• Vary size, dimension being communicated as well as MPI communication strategy

• Integrating and testing various NVIDIA profiling tools into communication system

• Encouraging initial results on ability of benchmark to evaluate
• Costs/benefits of different MPI data exchange strategies
• Ability of GPU profiling tools to capture communication costs

• More details and results on poster by Keira Haskins from SNL internship (mentors Kurt
Ferreira and Scott Levy)

Partitioned Communication
Modeling
• Partitioned communication promising for improving

performance but has complicated performance
tradeoffs

• Performance change vs. partition size

• Amount of compute/communicate overlap achievable

• Developed model of partitioned communication
performance using model of when threads reach
partitioned communication call

• Accurately predicts partitioned communication
performance on simple benchmarks on LLNL Lassen
system

• Work on extending model to partitioned application
on of SNL summer internship

• Additional details in poster presentation by Jered
Domingue—Trujillo (SNL mentors: Ryan Grant and
Matthew Dosanjh)

Impact of partitioned communication is to increase
effective bandwidth though overlap for medium-sized
message. Model accurately predicts this when tested on
LLNL Lassen cluster

Rationale for why modern primitives are
helpful… and achievements thus far

• Persistent communication –- see Gerald’s poster

• Partitioned communication has complex performance tradeoffs – see
Jered’s modeling

• MPI Datatypes issue – Fiesta and Rei’s ping pong numbers (poster
sessions), and that there are more improvements in the works here

• Partitioned communication – MPIPCL
• Published papers, useful source code, integration/collaboration with Sandia

• Component of the MPI Advance project now

Next steps

• Combine neighbor collectives and partitioning

• Collaborations in our center to define use cases and specific APIs

• MPI Forum WG on Partitioned and Persistent and Collective ops

• Optimize neighbor collective halo exchanges to take into account
GPU costs

• Study/tweak interactions of Kokkos+MPI (ex: stream vs. device sync)

• Demonstrate value of asynchronous (strong) progress

Next steps, II

• Optimize neighbor collective halo exchanges to take into account
GPU costs

• A100 experiments, embedding in progress engines

• Correlating with partitioned offload of kernels

• Correlating with performance modeling that’s been done already

• Leverage ExaMPI test implementation and MPI Advance
prototype

• Testing capabilities of CUDA Graphs, libmp

Lifecycle of concept to standard to
production in MPI+X
• Concepts derived from NNSA codes

• Prototypes defined and demonstrated to help

• Close interactions with MPI Standard for future standardization
• MPI-4 successes: Persistent Collectives, Partitioned Point-to-point
• On-going: Collective/Partitioned/Persistent/HACC working groups

• MPI Advance supports
• Credibility, proof of concept, long-haul application support
• early access (e.g., MPI-5 will publish in 2026-27)
• Means to demonstrate achievable performance, establish new best practices
• Baseline code for production MPI implementations

Q&A

